Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Foods ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002172

RESUMO

In this paper, a combination of non-targeted metabolomics and multi-element analysis was used to investigate the impact of five different cultivars on the sensory quality of QTMJ tea and identify candidate markers for varietal authenticity assessment. With chemometric analysis, a total of 54 differential metabolites were screened, with the abundances significantly varied in the tea cultivars. By contrast, the QTMJ tea from the Yaoshan Xiulv (XL) monovariety presents a much better sensory quality as result of the relatively more abundant anthocyanin glycosides and the lower levels of 2'-o-methyladenosine, denudatine, kynurenic acid and L-pipecolic acid. In addition, multi-elemental analysis found 14 significantly differential elements among the cultivars (VIP > 1 and p < 0.05). The differences and correlations of metabolites and elemental signatures of QTMJ tea between five cultivars were discussed using a Pearson correlation analysis. Element characteristics can be used as the best discriminant index for different cultivars of QTMJT, with a predictive accuracy of 100%.

2.
Food Res Int ; 174(Pt 1): 113615, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986470

RESUMO

Long-term storage of Liupao tea (LPT) is usually believed to enhance its quality and commercial value. The non-volatile metabolites variations and the fungal succession play a key role for organoleptic qualities during the storage procedure. To gain in-depth understanding the impact of storage time on the quality of LPT, two different brands of LPT with different storage time, including Maosheng LPTs (MS) with 0, 5, 10 and 15 years and Tianyu LPTs (TY) with 0, 3, 5, 8 and 10 years, were resorted to investigate the changes of non-volatile metabolites and fungi as well as their correlation by multi-omics. A total of 154 and 119 differential metabolites were identified in these two different brands of MS and TY, respectively, with the aid of high-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. In both categories of LPTs, the transformation of differential metabolites in the various stages referred to the formation of alkaloids, increase of organic acids, biosynthesis of terpenoids as well as glycosylation and methylation of flavonoids. Thereinto, glycosylation and methylation of flavonoids were the critical stages for distinguishing MS and TY, which were discovered in MS and TY stored for about 10 and 8 years, respectively. Moreover, the results of high-throughput sequencing showed that the key fungal genera in the storage of LPTs consisted of Eurotium, Aspergillus, Blastobotrys, Talaromyces, Thermomyces and Trichomonascus. It was confirmed on the basis of multivariate analysis that the specific fungal genera promoted the transformation of metabolites, affecting the tea quality to some extent. Therefore, this study provided a theoretical basis for the process optimization of LPT storage.


Assuntos
Micobioma , Chá , Cromatografia Líquida , Chá/química , Espectrometria de Massas em Tandem , Flavonoides/química , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...